Artificial General Intelligence via Finite Covering with Learning

نویسندگان

  • Yong K. Hwang
  • Samuel B. Hwang
  • David B. Hwang
چکیده

This position paper claims that the combination of solutions to a finite collection of problem instances and an expansion capability of those solutions to similar problems is enough to achieve the artificial general intelligence comparable to the human intelligence. Learning takes place during expansion of existing solutions using various methods such as trial and error, generalization, case-based reasoning, etc. This paper also looks into the amount of innate problem solving capability an artificial agent must have and the difficulty of the tasks the agent is expected to solve. To illustrate our claim examples in robotics are used where tasks are physical movements of the agent and objects in its environment.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Image alignment via kernelized feature learning

Machine learning is an application of artificial intelligence that is able to automatically learn and improve from experience without being explicitly programmed. The primary assumption for most of the machine learning algorithms is that the training set (source domain) and the test set (target domain) follow from the same probability distribution. However, in most of the real-world application...

متن کامل

An Adaptive Learning Game for Autistic Children using Reinforcement Learning and Fuzzy Logic

This paper, presents an adapted serious game for rating social ability in children with autism spectrum disorder (ASD). The required measurements are obtained by challenges of the proposed serious game. The proposed serious game uses reinforcement learning concepts for being adaptive. It is based on fuzzy logic to evaluate the social ability level of the children with ASD. The game adapts itsel...

متن کامل

Perception Processing for General Intelligence, Part I: Representationally Transparent Deep Learning

Bridging the gap between symbolic and subsymbolic representations is a – perhaps the – key obstacle along the path from the present state of AI technology to human-level artificial general intelligence. The companion paper (Part II) describes a novel approach to achieiving this bridging via incorporation of a subsymbolic system and a symbolic system into a integrative cognitive architecture. Th...

متن کامل

The Animat Path to Artificial General Intelligence

Stewart Wilson introduced the term animat for artificial animals and outlined the animat path to artificial intelligence. In this paper the animat path to artificial general intelligence is explored. A general computational model is proposed for animats living in dynamic block worlds, e.g. in the Minecraft environment. The model uses mechanisms for learning and decision-making that are common t...

متن کامل

OPTIMAL DECOMPOSITION OF FINITE ELEMENT MESHES VIA K-MEDIAN METHODOLOGY AND DIFFERENT METAHEURISTICS

In this paper the performance of four well-known metaheuristics consisting of Artificial Bee Colony (ABC), Biogeographic Based Optimization (BBO), Harmony Search (HS) and Teaching Learning Based Optimization (TLBO) are investigated on optimal domain decomposition for parallel computing. A clique graph is used for transforming the connectivity of a finite element model (FEM) into that of the cor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008